seeks safety by ruming moler some convenient cover instead of by flight.

These notes seen to indicate that, while some species are confined to midsummer, most of the Pine Barren Cicindela appear late in the summer and continue until fall, when they hibernate in the sand and reappear early in spring ; Mr. H. W. Wenzel informs me that many species recorded at Lakeburst on April 10 and April is have been fomm at In Costa on March 16 when there was still snow on one side of the railroad cut in which they were found. The indications that some individuals hibernate are indeed very strong; lat it may well be that others do not complete their transformation until spring and then join their more expeditious brethren to make up the greater spring abundance of specimens.

CLASSIFICATION OF THE POINTED-TAILED WASPS, OR THE SUPERFAMILY PROC-TOTRYPIDÆ.--I.

By William H. Ashmeab, A.M.,

Ashstant Curator, U. S. National, Muselon, Washincimen, D. (..

The writer, in his attempt towards a more natural classification of the Hymenoptera, in the Journal of the New York Entomological Society for March, i 899, separated these insectis into ten superfamilies, namely: 1, Apoidea; II, sphecoidea; III, Vespoidea; IV, Formicoidea; V, J'roctotrypoidea; VI, Cymipoidea; VII, Chalcidoidea; V1II, Ithnemmonoidea; IX, Siricoidea, and X, Tenthredinoidea, which be considered were large matural groups, the serfuence so arranged to show, as mearly as it were possille in a tabular arrangement, their affinities and relationship.

The new scheme of arrangement has leen most favorably received notwithstanding its incompleteness, since only a few of these superfamilies have as yet been treated in toto and it is hardly possible yet, exrept in the vaguest way. for the student to appreciate the merits of the system in its entirety.

Of these ten superfamilies I have now classified down to genera, the Apoidea, the Sphecoidea, the Vespoidea, the Chatcidoidea,* the Tch-

[^0]neumonoidea, the Siricoidea and the 'Tenthredinoidea. The Formicoidea, the Proctotrypoidea and the Cynipoidea still remain to be treated.

In the present paper, or rather series of papers, I propose to give my ideas on the classification of one of these remaining superfamilies -the Proctotrypoidea.

It has been just ten years since I wrote my monograph on the North American Proctotrypidæ. During these years I have made laborious studies into all the families of the Hymenoptera, and it is only natural, therefore, that my ideas and views should broaden and change with increased knowledge, that I should now see more clearly affinities and relationship in groups not before noticed, and that my conception of what constituted a family, still a vague term, should be modified.

In my opinion, the old conception of the family Proctotrypidæ was erroneous in some particulars ; it was a complex group and represented more than a family ; it really represented a superfamily, with many families. Some of the forms, too, classified as Proctotrypids, had no relation whatever with these insects, while others, placed elsewhere, the P'elecinidæ, Monomachus, etc., were in reality genuine Proctrypoids and should have been classified with them.

The subfamilies Bethylinæ, Emboleminæ and Dryininæ, too, as I have shown elsewhere, really represent a natural family of higher rank far removed from genuine Proctotrypoids, and belong among the Aculeata or Fossores.

These remarks will suffice to introduce and account for the changes made in the classification of this great complex.

Classification.

Superfamily V. PROCTOTRYPOIDEA.
Table of Families.
1 Trochanters distinctly two-jointed 2 Trochanters I-jointed.
Antennre 14 -jointed, inserted on the middle of the face; front wings with a lanceolate stigma, the marginal cell long, open at apex ; mandibles dentate ; maxillary palpi 5 -; labial palpi 3 -jointed; ; abdomen greatly elongated, slender and cylindrical, about five times the length of the head and thorax united, composed of six segments; đ abdomen clavate.

Family L. Pelecinide.
2. Antennæ inserted at the clypeus

6
Antennæ inserted on the middle of the face, often on a frontal prominence.
\qquad 5

King
Winged forms 3
3．Front wings with the marginal vein linear，never stigmated 4
Front wings with the marginal vein stigmated，or with a distinct stigma．

Mandibles dentate；antennæ 14 －or $\mathbf{1}_{5}$－jointed ；claws simple or pectinate；hind wings with a more or less distinct venation．．．．．．．．．．．．．．Family LI．ITelorid．e．．
Nandibles edentate；antenme 13－jointed with one ring－joint（ 12 －jointed without ring．jointed）；claws simple；hind wings without a distinct venation． Family I．II．Proctotrypid．玉．
4．Front wings with a distinct basal cell and usually with a distinct marginal cell， the latter never wholly wanting although often incomplete；hind wings always with a basal cell ；antenne 14－15－jointed；labial palpi 3－jointed．

Family 1．11l．Belytid．e．
Front wings rarely with a distinct basal cell，the median vein most frequently ob－ solete or subobsolete，the marginal cell never complete，usually wholly wanting； hind wings always without a basal cell ；antenne If－to I4－jointed；labial palpi 2 － jointed．．LlV．ImpriIn．E．
5．Mandihles edentate ；tip of abdomen stylate．．．．．．．．．．Family LII．Proctotrypid．． Mandibles dentate；tip of abdomen not stylate．

Labial palpi 3－jointed． ．．Family IIII．Belytid．e．
Labial pratpi 2 －jointed．．Family LIV．DIOPRID．E．
6．Wingless forms 8 Winged forms．
Abdomen acute or margined along the sides and sessile or subsessile． 7
Abdomen rounded at sides，never acute or margined；front tibixe with the apical spur，strongly forked；antennæ in 9 ro－or I I－jointed，in $\widehat{\text { ot I I－jointed ；front }}$ wings always without a postmarginal vein，the stigmal vein long，the mar－ ginal vein either linear or stigmated．．．．．．．．．．．．．．．．「amily LV．Ceraphranid．玉．
7．Front wings most frequently with marginal and stigmal veins ；antennæ usually 12 － jointed in both sexes，sometimes in 9 11－jointed，or 7 －jointed when the club joints coalesce and form a single large joint．．．．．．．．．．．．．Family LVI．Scebionide．
Front wings always without marginal and stigmal veins and most frequently en－ tirely veinless，at most with only a submarginal or subcostal vein，which is sometimes clavate at apex ；antenne never more than ro－jointed，usually with the same number of joints in both sexes，rarely only \mathcal{S}－or 9 －jointed．

Family LVII．Platygasterid．e．
8．Abdomen along the sides rounded，not acute or margined；front tibire with the apical spur strongly forked． Family LV．Ceraphronide．
Abdomen with the sides acute or margined ；front tibite with one spur．
Antenne 12－jointed，or if with a solid club 7－jointed；labial palpi two－jointed
or more ．．．Family LVI．Scelionib．．．
Antenne io－jointed or less；labial palpi I－jointed．
Family LVII．Platygasteridef．

Family L．Pelecinid．e．

This family is represented by a single genus，with several species，confined to the New World，i．e．，North and South America．

Our common species, Pelecinus polyturator Drury, is not rare in some of the Northem States, in August and September, and the female forms a conspicuous object when flying, since its flight is slow and difficult on account of its abnormally lengthened abdomen. The male, on the contrary, is extremely rare and exceeding rapid in flight. It is sharp-eyed, takes flight rapidly and is rarely captured.

According to Prof. S. A. Forbes, P. polyturator Drury, lives parasitically upon the larve of our Miay beetles (Lachnosterne).
Antennæ 14-jointed, inserted on the middle of the face.
Abdomen in ρ very long, cylindrical, several times longer than the thorax, in $\hat{\delta}$ clavate. \qquad Pelecinus Latreille (type Ichneamon polyturator I) RURy).

Family LI. Iterorid.e.
This family is readily distinguished by the characters made use of in my table of families. It forms a connecting link between the family Pelecinida, probably the oldest type of a Proctotrypoid, and the Proctotrypidæ and the Belytidx.

The Helorine attack the golden-eyed flies, Chrysopidæ, while the Monomachinæ, 1 suspect, are parasitic upon ant-lions, Myrmeleonidæ.

Table of Subfamilies.

Claws simple; basal nervure normal, not broken ; abdomen longly petiolated; antennæ 14-jointed Subfamily I. NONOMACHINA.
Claws pectinate ; basal nervure abruptly broken and bent downwards forming a triangular discoidal cell ; antemæ 15 -jointed. \qquad Subfamily II. HELORINÆ.

Subfamily I. MONOMACHINE.

Table of Genera.

Front wings with only one discoidal cell, the first absent ; apex of metathorax strongly produced beyond the insertion of the hind coxæ; body of abdomen in the female strongly compressed, long, narrow, lanceolate, in male fusiform, head with temples and cheeks strongly buccate ; scape of antennæ rather long.

Monomachus Westwood (type 11. gladiator (Klug) Westwood).
Front wings with two discoidal cells, the first present ; apex of metathorax truncate; body of abdomen in δ compressed, as seen from the side triangular or pyriform in outline ; head not buccate; scape of antemæ short.......Roptronia Provancher (type R. pediculata Prov.).

Subfamily II. HELORIN.E.

Only a single genus is known in this subfamily which may be recognized by the following characters :
Antenne 15 -jointed, the scape short; abdomen ovate or oblong-oval, the second very large; claws pectinate.

Helorus Latreille (type Sphex amomalipes Panger).

Family LiI. Proctotrypid.e.

This family is parasitic upon the larver of beetles and is easily separated from all the other families by the edentate mandibles and by abdominal peculiarities; the abdomen in the females terminates in a stylus or cauda, in the males in two spines or
prongs. The antenne are 13 -jointed, with one ring joint, in both sexes, the scapevery short, oval, the pedicel very minute and often more or less hidden within theapex of the scape.
Table of Genera.
I. Nales; abdomen ending in two prongs or spines... 3
Females; abdomen ending in a stylus or cauda. Wingless forms 2
Winged; maxillary palpi 4 jointed, the last joint linear.
Mesonotum with distinct parapsidal furrows

\qquad
Disogmus Förster(type Prectotrypes areolatus Hal.).
Mesonotum without parapsidal furrows. Proctotrypes Latreille.
(type Ichneumon gravidator LinNE).
2. Metathorax smooth; maxillary palpi short, 3 -jointed, the last joint subclavate.Codrus Jurine (type Proctorypes aplerogynus Hal..).3. Metathorax rugose or areolated; maxillary palpi + -jointed.Mesonotum with parapsidal furrows.Disogmus Förster.Mesonotum without parapsidal furrows.................... Proctotrypes Latreille.Metathorax smooth, exareolate; maxillary palpi 3 -jointed...........Codrus Jurine.
Family LII. Belytidef.
The venation, which is quite distinct from the other families, distinguishes the family. The antenne are porrect, inserted on a frontal prominence, filiform, setaceous or subclavate, and I4- or 15-jointed, with a long scape; mandibles usually short, with a tooth within, rarely falcate and decussate; maxillary palpi 4 or 5 -jointed; labial palpi 3 -jointed; legs rather long and slender, the tibial spurs I, 2, 2, the tarsi long and slender, 5 jointed, the claws always simple; while the abdomen is variable in shape but always distinctly petiolate.
The family comes quite close to the I)iapriidre but is easily separated by having 3-jointed labial palpi and by the venation of the hind wings, which have a basal cell.
The group is supposed to be parasitic upen Dipterous larve inhabiting fungi. Betyla fulva Cameron is recorded from Bolitophila laminosa.
Tiable of Genera.
r. Females 2 18
Males.
Males.
2. Antemre 13 -jointed. 17
Antemnie 14- or 15-jointed.
Antenna 15-jointed. 3
Antennæ If-jointed. I 6
3. Abdomen with more than 4 dorsal segments. 6
Abdomen with 3 or 4 dorsal segments.
Marginal vein not or scarcely longer than the marginal cell 4Marginal vein more than twice the length of the marginal cell.Macrohynuis Förster (type unknown).4. First funicle joint not unusually long.5
First funicle joint unusually long, nearly as long as all the rest of the jointsunited, the intermediate joints transverse-moniliform.

Diphora Förslev (type D. westruodi Först.).
5. Abdomen with three, rarely with 4 dorsal segments, the second not greatly lengthened, the third long and strongly compressed at sides; marginal vein not shorter than the marginal cell ; antennæ filiform, pubescent, the funicular joints all long.

Leptorhaptus Förster (type L. abbreviatus Förster).
Abdomen with 3 dorsal segments, the second very much lengthened, nearly extending to the tip of the abdomen, the third issuing from it as a short stylus; marginal vein usually distinctly shorter than the marginal cell, antennæ filiform, pubescent, the 5 or 6 terminal joints oval, the others long.......... Miota Förster (type unknown).
6. Abdomen with 7 or 8 dorsal segments... 7

Abdomen with 5 or 6 dorsal segments, long and slender.
Abdomen with 5 segments, the last three long and slender, together as long as the second and resembling the terminal segments of a scorpion; antenne long, filiform.........Scorpioteleia Ashmead. (Type S. mirabilis Ashm.).
Abdomen with 6 segments, the tip curving upwards, the second segment hardly longer than the long petiole, dorsally triangularly excised at apex, the third a little longer than 4 and 5 united, the last conical ; antennre filiform, the last joint ovate, stouter and about as long as the two preceding joints united.

Stylidodon Ashmead (type S. politum Ashm.).
7. Winged forms; thorax normal ; ocelli present. $71 / 2$
Wingless; thorax narrow, attenuated; head oblong oval ; ocelli wanting.
Betula Cameron (type B. fulv, CAM.).

$71 / 2$. Abdomen with S dorsal segments
 Abdomen with 7 dorsal segments.

 9Antennæ clavate-moniliform, the first funicle joint slightly longer than the pedicel, all the others to the last, moniliform, the last enlarged, oval ; first abscissa of the radius usually straight, rarely very oblique.

Acropiesta Förster (type A. collaris Först.).
9. Eyes bare.. 5

Eyes hairy.
Middle carina of metanotum not divided.. Io
Middle carina of metanotum divided, or wanting..............Belyta. Jurine
(type B. bicoior Jurine).
10. Postscutellum normal, unarmed 11
Postscutellum armed with a strong thorn or spine................Oxylabis Förster (type Belyta bisulca Nees.).
II. Third dorsal segment of abdomen not, or very little, longer than the fourth.. I2 Third dorsal segment of abdomen much longer than the fourth.

Mandibles short, small ; marginal vein as long as the marginal cell ; antennæ filiform, pubescent, the last flagellar joint more than twice as long as thick.

Cinetus Jurine (type unknown.)
Mandibles long, falcate, decussate; marginal vein shorter than the marginal cell ; last funicular joint not more than twice as long as thick.

Xenotoma Förster (type Belyta bicolor Nees.).

[^1]First abscissa of the radius straight from the margin, shorter than the marginal vein ; funicular joints only slightly shortening \qquad Zelotypa Förster (type unknown).
First abscissa of the radius oblique, usually longer than the marginal vein ; funicular joints strongly shortening, the apical joints wider than long.

Pantoclis Förster (type Belyta brezis Nees).
13. Stigmal vein very short, with an uncus, marginal vein as long as the basal nervure

14
Stigmal and postmarginal veins much shortened but distinct.
Stigmal vein originating at almost a right angle; antennæ filiform, funicle joints 2-12 transverse moniliform, the pedicel obconical.

Zygota Förster (type Belyta abdominalis Nees).
Stigmal vein originating at a very oblique angle; antennæ clavate, monili-
form, the first funicle joint only a little longer than thick and smaller than the pedicel

Aclista Förster (type unknown).
14. Mandibles conical, not rostriform; palpi 4-jointed; scape at tip produced into a little spine \qquad Synacra Förster (type Diapria bra, hialis Nees).
15. Mesonotum with distinct parapsidal furrows; marginal cell long, open; antennee clavate, moniliform, the first funicle joint slightly longer than the pedicel.

Psilomma Färster (type unknown).
Mesonotum without parapsidal furrows; marginal cell not long and closed; antennæ subfiliform \qquad Ismarus Haliday (type I. dorsiger Cutris).

16. Wingless; ocelli wanting
 Anommatium Förster (type unknown).

 Winged; ocelli present.Marginal cell distinct, closed; antenne filiform or subclavate.
Anectata Fürster (type unknown).
Marginal cell wanting or only slightly developed ; antennex subclavate, moniliform, pubescent, the first joint of funicle smaller than the pedicel..................... Pantolyta Förster (type Belyter heterocera IIal). 17. Parapsidal furrows obsolete; angles of metathorax spined.

Malvina Cameron (type 1H. functata Cim).
18. Petiole of abdomen nearly twice as long as the metathorax......................... 19

Petiole of abdomen not, or scarcely, longer than the metathorax.................. 21
19. Marginal vein not twice as long as the marginal cell............................... 20

Marginal vein twice as long as the marginal cell.......... Macrohynnis Förster.
20. Second abdominal segment compressed laterally; petiole above smonth.

Antenne filiform, the scape as long as the first funicular joint, the latter strongly emarginate at base \qquad Leptorhaptus Förster.
Antenne filiform, pubescent, the scape shorter than the first funicular joint, the latter not so strongly emarginate at base. \qquad . Miota Förster.
Second abdominal segment not compressed laterally, the abdomen becoming more flattened behind this segment, the petiole above more or less furrowed; scape longer than the first funicle joint.

Cinetus furine.
2I. Middle carina of metathorax not divided 22
Middle carina of metathorax divided or absent.
Marginal vein scarcely longer than the stigmal, the marginal cell long; antenme filiform, all the joints long, cylindrical, the first funicular joint emarginate at base.
Belyta Juine.
22. Postscutellum withoui a spine.
................ 23
Postscutellum with a spine or thorn......................................Oxy
23. Eyes hairy.........
Eyes bare.25
24. Scape normal, not produced on one side into a tocth at ape.............. marginal
Acropiesta Förster.cell closed
26
25. Marginal cell completely closed 28
Marginal cell open or wanting.26. Marginal vein at least twice as long as the first abscissa of the radius (stigmalvein).

Margimal vein not or only a litte longer than the first abscissa of the radius, the latter usually oblique.
Narginal cell abnormally large, lanceolate, extending nearly to the tip of the wing.
Marginal cell normal.
Betyla Cameron.
Last ventral segment straight and punctate.
Front tibix normal
Front tibix bent with a spined process near the middle.
Zygota Förster.
Last ventral segment somewhat bent, impunctate....Pantoclis Füster. 27. First abscissa of the radius (the stigmal vein) straight or perpendicular, forming a right angle with the margin, rarely slightly oblique
Zelot ypa Förster.
28. Marginal cell more or less present.
Narginal cell much lengthened; front tibix bent and outwardly on side near the middle, produced into a tooth or spine............Zygota Förster. Marginal cell not much lengthened; front tibix normal......Aclista Förster: Marginal ce!! wanting.
Basal nervure distinct; antenne filiform, pubescent, the joints lengthened, the first flagellar joint twice as long as the pedicel and slightly emarginate at base
Pantolyta Förster.
29. Mesonotum with parapsidal furrows; marginal cell long, open; antennæ stout, filiform. the first flagellar joint longer than the second, slightly emarginate at base, the joints after the second hardly twice as long as thick.
Psilomma Förster.
Mesonotum without parapsidal furrows; marginal cell closed ; antenne filiform, not stout, the first flagellar joint shorter than the second...Ismarus Halididy.

[^0]: *To be publiched shortly by the Carnegie Museum, Pittsburgh, Pa.

[^1]: 12. Marginal cell open at apex

 I3
 Marginal cell closed.

